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Abstract

We consider the solution of nonlinear programs in the case where derivatives
of the objective function and nonlinear constraints are unavailable. To solve
such problems, we propose an adaptation of a method due to Conn, Gould,
Sartenaer, and Toint that proceeds by approximately minimizing a succession
of linearly constrained augmented Lagrangians. Our modification is to use a
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derivative-free generating set direct search algorithm to solve the linearly con-
strained subproblems. The stopping criterion proposed by Conn, Gould, Sarte-
naer and Toint for the approximate solution of the subproblems requires explicit
knowledge of derivatives. Such information is presumed absent in the gener-
ating set search method we employ. Instead, we show that stationarity results
for linearly constrained generating set search methods provide a derivative-free
stopping criterion, based on a step-length control parameter, that is sufficient
to preserve the convergence properties of the original augmented Lagrangian
algorithm.
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1 Introduction

In this paper, the problems of interest are general nonlinear optimization problems
of the following form:

minimize f(x)
subject to c(x) = 0

Ax ≥ b.
(1)

Here the objective function is f : Rn → R. The constraints are a mixture of explicit
linear constraints and general equality constraints. The matrix A ∈ Rp×n defines
the explicit linear constraints, including linear equality constraints and bounds on
the variables; aT

i denotes the ith row of A. The general equality constraints are c :
Rn → Rm; ci(x) denotes the ith equality constraint. General inequality constraints
are assumed to be converted to equalities by introducing nonnegative slack variables;
see Section 7.

The motivation for the work reported here is the situation in which the deriva-
tives of both f and c are either unavailable or unreliable. The algorithm we present
for solving (1) is an adaptation of an augmented Lagrangian method due to Conn,
Gould, Sartenaer, and Toint [5] (related work may be found in [3, 4, 6]). In their
approach the linear constraints are dealt with directly, but derivatives of f and c are
presumed to be available. Our adaptation of their algorithm makes use of generating
set search (GSS) methods [11], which neither require nor explicitly approximate these
derivatives, and yet possess standard first-order convergence properties. Specifically,
we use a derivative-free GSS variant for linearly constrained problems that is known
to possess good convergence behavior in both theory [12] and practice [15, 9].

In the augmented Lagrangian method due to Conn, Gould, Sartenaer, and Toint
[5], only the general nonlinear equality constraints are included in the augmented
Lagrangian Φ:

Φ(x; λ, µ) = f(x) +
m∑

i=1

λici(x) +
1

2µ

m∑
i=1

ci(x)2, (2)

where the components λi of the vector λ are the Lagrange multiplier estimates and µ
is the penalty parameter. Their method then involves successive linearly constrained
minimization of a more general version of (2). The basic form of the algorithm is:

As noted in [5], an attractive feature of this framework is that the linear con-
straints are kept outside the augmented Lagrangian and are handled at the level of
the subproblem minimization. This reduces the number of Lagrange multipliers that
must be estimated. It also allows the use of algorithms that ensure that the iterates
produced remain feasible with respect to the linear constraints.
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Initialization. Choose λ0, µ0, and x0 satisfying Ax0 ≥ b as well as various
parameters for stopping tolerances in the inner and outer iterations.

Outer iteration. For k = 0, 1, 2, . . .

Inner iteration. Find a solution xk+1 that approximately minimizes
Φ(x;λk, µk) subject to Axk+1 ≥ b, according to an appropriate
stopping criterion.

Test for convergence. If the final convergence tests are satisfied, stop
with the solution xk+1.

Updates. Else

• update the Lagrange multipliers to obtain λk+1,
• update the penalty parameter to obtain µk+1, and
• update assorted parameters, including the stopping tolerances for

the inner iteration.

Algorithm 1.1: A basic framework for the augmented Lagrangian approach that leaves
the linear constraints explicit.

We adapt the above framework, making use of a GSS method for solving linearly
constrained problems [12] to solve the inner iteration while preserving the convergence
properties of the augmented Lagrangian algorithm in [5]. The catch for us is that
the “appropriate stopping criterion” for the inner iteration, as originally defined in
[5], involves the explicit gradient of the augmented Lagrangian. The GSS adaptation
substitutes a suitable derivative-free stopping criterion. We show that our stopping
criterion for the linearly constrained subproblem can be substituted for the one used
in [5] without sacrificing the convergence properties of the original approach. Thus
we, too, are able to proceed by successive, inexact minimization of the augmented
Lagrangian via GSS methods, even though we do not know directly how inexact the
minimization is.

Dealing with general nonlinear constraints in the absence of derivatives is chal-
lenging and has received considerable attention over the years. Summaries of early
work appear in [7] and [1, Section 13.1]. Approaches to handling general nonlinear
constraints can be partitioned into three basic alternatives. If the derivatives of c are
available, or reliable estimates can be obtained, then it is possible to make explicit
use of these derivatives to compute feasible directions at the boundary of the feasible
region. See [11, Section 8.3.1] for a summary of work involving this approach. The
second alternative is an augmented Lagrangian approach. The work we present here
may be viewed as an extension of the work in [16]; see also [11, Section 8.3.2]. For both
the feasible directions [21, 17] and augmented Lagrangian approaches [16], under stan-
dard assumptions it is possible to prove convergence to Karush–Kuhn–Tucker (KKT)
points of problem (1), as we will do here. The third alternative involves approaches
such as inexact penalization, exact penalization, barrier methods, and a variety of
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heuristics-based approaches. See [11, Section 8.3.3] for a summary of algorithmic
developments along these lines.

The paper proceeds as follows. Section 2 lays out the augmented Lagrangian al-
gorithm from [5] and reviews the relevant notation. Section 3 summarizes the GSS
algorithm from [12] for handling problems with linear constraints and recalls a criti-
cal stationarity result. In Section 4 we show how to incorporate the GSS algorithm
to solve the subproblems in the augmented Lagrangian algorithm by introducing a
derivative-free stopping condition. Section 5 summarizes the convergence results from
[5] that the GSS adaptation possesses. In Section 6 we discuss a way to relax the sub-
problem stopping criterion update introduced in [16] so as to improve computational
efficiency. Section 7 discusses the conversion of inequality constraints to equality
constraints through the introduction of slack variables. We close with some final
observations in Section 8.

11
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2 The augmented Lagrangian algorithm of Conn,

Gould, Sartenaer, and Toint

Our augmented Lagrangian GSS approach is based on Algorithm 3.1 of [5], which we
review in this section.

2.1 A comment on notation

To facilitate comparison of our approach with the original algorithm, we adhere to
the notation of [5] throughout. Subscripts may denote either a component of a vector
or an iteration index. Thus wi (or wj) denotes the ith (or jth) component of the
vector w while wk denotes the vector w from the kth iteration of the algorithm.
When combined, wk,j denotes that jth component of the vector wk. A vector can
also be subscripted by a set, i.e., w[S] denotes the |S|-dimensional subvector of w
whose entries are indexed by the set S. Moreover, subset indexing may be combined
with the iteration index as wk,[S].

2.2 The augmented Lagrangian

For the formulation of the augmented Lagrangian, the constraints c(x) are assumed to
be partitioned into q disjoint subsets {Qj}q

j=1 such that
⋃q

j=1Qj = {1, . . . ,m}. The
partitioning of c(x) enables the algorithm to place greater emphasis on achieving fea-
sibility for subsets of constraints that are, at any particular iteration, proportionally
more violated than the others.

The basic augmented Lagrangian given in (2) is replaced by

Φ(x; λ, µ) = f(x) +

q∑
j=1

∑
i∈Qj

[
λici(x) +

1

2µj

ci(x)2

]
.

The vector λ = (λ1, . . . , λm)T is the Lagrange multiplier estimate for the equality con-
straints and the vector µ = (µ1, . . . , µq)

T contains the penalty parameters associated
with each partition of c(x).

13



2.3 The linear constraints and cones

Mechanisms are required for handling the set of linear constraints that are nearly
binding at x. Let κ0 > 0 be fixed. Define B = { x | Ax ≥ b }. For x ∈ B, let

D(x, ω) =
{

i ∈ {1, . . . , p} | aT
i x− bi ≤ κ0ω

}
(3)

denote the indices of the linear constraints that, with respect to ω, are considered
nearly binding at x. From this, define the ω-normal and ω-tangent cones

N(x, ω) =

 v | v =
∑

i∈D(x,ω)

ξiai, ξi ≤ 0

 and T (x, ω) = N◦(x, ω).

The cone N(x, ω) is the cone generated by the outward pointing normals to the nearly
binding linear constraints and T (x, ω) is its polar. If D(x, ω) = ∅, then N(x, ω) =
{0} so that T (x, ω) = Rn. The projection of the vector v onto T (x, ω) is denoted
PT (x,ω)(v).

2.4 The subproblem

At the kth outer iteration of the augmented Lagrangian method, an inexact solution
to the following subproblem is required:

minimize Φk(x)
subject to Ax ≥ b,

(4)

where

Φk(x) ≡ Φ(x; λk, µk) (5)

and the vectors λk and µk are updated each outer iteration.

The solution xk of (4) must satisfy:

‖ PT (xk,ωk)(−∇xΦk) ‖ ≤ ωk, (6)

where

∇xΦk ≡ ∇xΦ(x; λk, µk)

and the scalar ωk > 0 is a suitable tolerance that is updated at each outer iteration
in a way that ensures ωk → 0 as k →∞.

14



2.5 The full algorithm

We reproduce Algorithm 3.1 in [5] as Algorithm 2.1. The parameters ωk and ηk

represent stationarity and feasibility tolerances at iteration k, respectively. Updates
for these two parameters, as well as for λk and µk are specified. The Lagrange
multiplier estimates λk are updated according to the first-order Hestenes–Powell [10,
19] update rule:

λ̄(x, λ[Qj ], µj)[Qj ] = λ[Qj ] + c(x)[Qj ]/µj (j = 1, . . . , q). (7)

Since the Hestenes–Powell multiplier update and its variants do not require informa-
tion about derivatives of f and c, unlike other update formulas (see, for instance,
[2, 20]), they are appropriate for derivative-free methods.

The following assumptions are made in [5] for the purposes of their convergence
analysis, which we review in Section 5. We also make similar assumptions for the
results in Sections 3 and 4 so that the hypotheses are consistent.

AS1 [5, p. 676] The set B is nonempty.

AS2 [5, p. 676] The functions f(x) and c(x) are twice continuously differentiable
for all x ∈ B.

AS3 [5, p. 681] The iterates {xk} lie within a closed, bounded domain Ω.

Note that we place smoothness assumption on f and c for the purposes of analysis
only. Neither the first nor second derivatives of f and c are required or used in the
algorithms that follow.
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Step 0. [Initialization]. A partition of the set {1, . . . ,m} into q disjoint subsets
{Qj}q

j=1 is given, as well as initial vectors of Lagrange multiplier estimates λ0

and positive penalty parameters µ0 such that

µ0,j < 1, j = 1, . . . , q.

The strictly positive constants κ0, ω∗ � 1, η∗ � 1, τ < 1, αη < 1, and βη < 1
are specified. Set α0 = maxj=1,...,q µ0,j , ω0 = α0, η0 = α

αη

0 , and k = 0.

Step 1. [Inner iteration]. Find xk ∈ B that approximately solves (4), i.e., such that
(6) holds.

Step 2. [Test for convergence]. If ‖ PTk
(−∇xΦk) ‖ ≤ ω∗ and ‖ c(xk) ‖ ≤ η∗, stop.

Step 3. [Disaggregated updates]. For j = 1, . . . , q, execute Step 3a if

‖ c(xk)[Qj ] ‖ ≤ ηk

or Step 3b otherwise.

– Step 3a. [Update Lagrange multiplier estimates]. Set

λk+1,[Qj ] = λ̄(xk, λk,[Qj ], µj,k)[Qj ],

µk+1,j = µk,j .

– Step 3b. [Reduce the penalty parameter]. Set

λk+1,[Qj ] = λk,[Qj ],

µk+1,j = τk,jµk,j ,

where τk,j =
{

τ if µk,j = αk,
min(τ, αk) otherwise.

Step 4. [Aggregated updates]. Define

αk+1 = max
j=1,...,q

µk+1,j .

If αk+1 < αk, then set

ωk+1 = αk+1,

ηk+1 = α
αη

k+1;

otherwise set
ωk+1 = ωkαk+1,

ηk+1 = ηkα
βη

k+1.

Increment k by one and go to Step 1.

Algorithm 2.1: Augmented Lagrangian algorithm of Conn, Gould, Sartenaer, and Toint.
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3 Generating set search for linearly constrained

problems

To adapt the augmented Lagrangian framework in the absence of derivatives for f and
c, we solve subproblem (4) using a GSS algorithm for linearly constrained optimization
[12]. In this section, we review salient details of the algorithm.

3.1 A comment on notation

We use a “hat” (as in f̂ , D̂, N̂ , T̂ , α̂, and κ̂) to distinguish between variables discussed
in [12] and those discussed in Section 2 since the notation is similar but the quantities
are not necessarily equivalent. Once again subscripts may denote either a component
of a vector or an iteration index. Thus bi denotes the ith component of the vector b
while x` denotes the vector x from the `th iteration of the GSS algorithm for linearly
constrained problems.

3.2 The linearly constrained problem

GSS for linearly constrained optimization solves problems of the form:

minimize f̂(x)
subject to Ax ≥ b.

(8)

Here f̂ : Rn → R and A is the same as in (1). The set B = { x | Ax ≥ b } denotes
the feasible region for problem (8).

3.3 The linear constraints and cones

The GSS methods in [12] also use the cone generated by the working set of nearby
constraints and the polar of this cone, but the definitions are not identical to those
in Section 2.3. The definition of D(x, ω) in (3) defines the working set by looking
at the values of the constraints. In the GSS case, the definition of the working set
uses distance to the constraints. We use ε rather than ω and define the ε-binding
constraints (the working set) for x ∈ B as

D̂(x, ε) =

{
i ∈ {1, . . . , p} | aT

i x− bi

‖ ai ‖
≤ ε

}
. (9)

17



From this, we define the ε-normal and ε-tangent cones as before:

N̂(x, ε) =

 v | v =
∑

i∈D̂(x,ε)

ξiai, ξi ≤ 0

 and T̂ (x, ε) = N̂◦(x, ε).

3.4 The GSS algorithm

In Algorithm 3.1, we present Algorithm 5.1 from [12], stated in the notation and style
of presentation adopted here.

Iteration ` of a GSS algorithm proceeds as follows. Compute a set of search
directions G` that conforms to the boundary defined by the ε-binding constraints
D̂(x`, ε`). Generate feasible trial points by taking a step, whose length is determined
by the step-length control parameter ∆`, along each search direction. If any of the
trial points yields sufficient decrease, specifically

f̂(x` + ∆̃` d`) < f̂(x`)− α̂∆2
` , (10)

where ∆̃` = max { ∆ ∈ [0, ∆`] | x` + ∆d` ∈ B }, then the iteration is deemed suc-
cessful and that trial point becomes x`+1. Otherwise no trial point admits sufficient
decrease and the iteration is deemed unsuccessful, in which case the step-length con-
trol parameter ∆` is reduced. The set of unsuccessful iterations is denoted by U and
plays an important role in the analysis of GSS methods.

Here, for convenience, we leave ∆` unchanged after a successful iteration and halve
∆` after an unsuccessful iteration. These updates could be altered, subject to the
conditions given in [12], without detriment to the analysis presented here.

The following two conditions on the search directions in Step 1 play a critical
role in the theory that follows, so we assume that both hold whenever we reference
Algorithm 3.1. We start with the following definition from [12]. For any finite set of
vectors G, we define

κ(G) = inf
v∈Rn

PK (v) 6=0

max
d∈G

vT d

‖ PK(v) ‖ ‖ d ‖
, where K is the cone generated by G

and PK(v) is the projection of the vector v onto the cone K. This is a generalization
of the quantity given in [11, (3.10)], where G generates Rn.

18



Step 0. [Initialization]. Let x0 ∈ B be the initial guess. Let ∆tol > 0 be the tolerance
used to test for convergence. Let ∆0 > ∆tol be the initial value of the
step-length control parameter. Let εmax > βmax∆tol be the maximum distance
used to identify nearby constraints (εmax = +∞ is permissible). Let α̂ > 0.

Step 1. [Choose search directions]. Let ε` = min{εmax, βmax∆`}. Choose a set of
search directions D` = G` ∪H` satisfying Conditions 3.1 and 3.2.

Step 2. [Successful iteration]. If there exists d` ∈ D` and a corresponding

∆̃` = max { ∆ ∈ [0,∆`] | x` + ∆d` ∈ B }

such that

f̂(x` + ∆̃`d`) < f̂(x`)− α̂∆2
` ,

then:

– Set x`+1 = x` + ∆̃`d`.

– Set ∆`+1 = ∆` (no change).

Step 3. [Unsuccessful iteration]. Otherwise,

– Set x`+1 = x` (no change).

– Set ∆`+1 = 1
2∆`.

If ∆`+1 < ∆tol, then terminate.

Step 4. [Advance]. Increment ` by one and go to Step 1.

Algorithm 3.1: Linearly constrained generating set search of Kolda, Lewis, and Torczon.

Condition 3.1 There exists a constant κ̂min > 0, independent of `, such that
for every ` for which T̂ (x`, ε`) 6= {0}, the set G` generates T̂ (x`, ε`) and
satisfies κ̂(G`) ≥ κ̂min.

Condition 3.2 There exist βmax ≥ βmin > 0, independent of `, such that for
every ` for which T̂ (x`, ε`) 6= {0}, the following holds:

βmin ≤ ‖d‖ ≤ βmax for all d ∈ G`.
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3.5 The critical stationarity result

The following restatement of a result from [12] is central to showing that we can
recognize when the derivative-free GSS method has solved the augmented Lagrangian
subproblem (4) to the accuracy (6) required by Algorithm 2.1. Theorem 3.3 gives a
bound on the size of the projection onto T̂ (x`, ε`) of ∇f̂(x`), which is not available to
us in the derivative-free context, in terms of the explicitly known step-length control
parameter ∆`.

Theorem 3.3 Suppose that the set B is nonempty, that the function f̂(x) is twice
continuously differentiable for all x ∈ B, and that the iterates produced by Algo-
rithm 3.1 lie within a closed, bounded domain Ω. Let M be a Lipschitz constant for
∇f̂ on Ω. If ` ∈ U and and ε` satisfies ε` = βmax∆`, then

‖ PT̂ (x`,ε`)
(−∇f̂(x`)) ‖ ≤

1

κ̂min

(
Mβmax +

α̂

βmin

)
∆`. (11)

Here, α̂ is from the step acceptance criterion (10), κ̂min is from Condition 3.1, and
βmax and βmin are from Condition 3.2.

Theorem 3.3 is a variant of Theorem 6.3 from [12] using the specific step acceptance
criterion (10). Theorem 3.3 assumes the iterates remain in a compact set Ω in order to
be assured of the existence of M , while Theorem 6.3 from [12] accomplishes the same
thing by assuming that the set { x ∈ B | f̂(x) ≤ f̂(x0) } is compact. Furthermore,
Theorem 6.3 from [12] assumes only that ∇f̂ is Lipschitz continuous. Looking ahead
to the results in Section 5, here we assume the stronger condition that f̂(x) is C2.
The proof of Theorem 3.3 is the same as that of Theorem 6.3.

Finally, we need the following immediate consequence of the step acceptance cri-
terion (10).

Theorem 3.4 Suppose that the function f̂(x) is continuous on B and that the it-
erates produced by Algorithm 3.1 lie within a closed, bounded domain Ω. Then
lim inf`→∞ ∆` = 0.

20



4 A GSS adaption of the augmented Lagrangian

algorithm

We now provide a modified version of the augmented Lagrangian algorithm of Conn,
Gould, Sartenaer, and Toint (Algorithm 2.1) that uses our linearly constrained GSS
algorithm (Algorithm 3.1) to solve the subproblem (4). In Algorithm 4.1 we have high-
lighted the differences between the new algorithm and its progenitor, Algorithm 2.1,
which lie in the choice of stopping criterion for the inner iteration, the update for the
associated stopping tolerance, and the test for convergence of the outer iteration.

4.1 The derivative-free stopping criterion

The substantive change to be addressed is that of finding a suitable stopping criterion
for the solution of (4). As noted earlier, we do not assume access to the derivatives of
f and c and thus cannot compute∇xΦk as required for the original stopping condition
(6). Instead, we make use of the conclusion of Theorem 3.3 to craft an appropriate
termination test for the subproblem. Specifically, we stop the inner iteration at the
first u ∈ U (the subsequence of unsuccessful GSS iterations) for which

∆k,u ≤ δk, (12)

where δk → 0 is a sequence of stopping tolerances for the inner iteration that is
updated at each outer iteration k. Theorem 3.4 assures us that this stopping criterion
eventually will be satisfied and thus that the inner iteration will terminate.

This change in the termination test for the inner iteration also affects the test for
convergence for the outer iteration. The original outer iteration convergence criteria
are that for some ω∗ � 1 and η∗ � 1,

‖ PTk
(−∇xΦk) ‖ ≤ ω∗ and ‖ c(xk) ‖ ≤ η∗.

These become

δk ≤ δ∗ and ‖ c(xk) ‖ ≤ η∗

for some δ∗ � 1. The test for feasibility is unchanged, but the test for constrained
stationarity is necessarily altered.

Clearly, if the convergence analysis from [5] is to hold, then the new sequence of
stopping tolerances δk needs to be tied to the original sequence of stopping tolerances
ωk. We also need to ensure a stable relationship between the stopping criterion (12)
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Step 0. [Initialization]. A partition of the set {1, . . . ,m} into q disjoint subsets
{Qj}q

j=1 is given, as well as initial vectors of Lagrange multiplier estimates λ0

and positive penalty parameters µ0 such that µ0,j < 1, j = 1, . . . , q. Set
κ0 = max1,...,p{‖ai‖}. The strictly positive constants ω∗ � 1, η∗ � 1, τ < 1,
αη < 1, and βη < 1 are specified. Set α0 = maxj=1,...,q µ0,j , ω0 = α0, η0 = α

αη

0 ,
and k = 0. In addition, specify strictly positive constants δ∗ � 1 and
θtol � 1. Set δ0 = ω0/ (βmax θ(λ0, µ0)).

Step 1. [Inner iteration]. Find x` ∈ B that approximately solves (4), i.e., such that
(12) holds.

Step 2. [Test for convergence]. If δk ≤ δ∗ and ‖ c(xk) ‖ ≤ η∗, stop.

Step 3. [Disaggregated updates]. For j = 1, . . . , q, execute Step 3a if

‖ c(xk)[Qj ] ‖ ≤ ηk

or Step 3b otherwise.

– Step 3a. [Update Lagrange multiplier estimates]. Set

λk+1,[Qj ] = λ̄(xk, λk,[Qj ], µj,k)[Qj ],

µk+1,j = µk,j .

– Step 3b. [Reduce the penalty parameter]. Set

λk+1,[Qj ] = λk,[Qj ],

µk+1,j = τk,jµk,j ,

where τk,j =
{

τ if µk,j = αk,
min(τ, αk) otherwise.

Step 4. [Aggregated updates]. Define

αk+1 = max
j=1,...,q

µk+1,j .

If αk+1 < αk, then set

ωk+1 = αk+1,

ηk+1 = α
αη

k+1,

δk+1 = ωk+1/(βmaxθ(λk+1, µk+1));

otherwise set
ωk+1 = ωkαk+1,

ηk+1 = ηkα
βη

k+1,

δk+1 = ωk+1/(βmaxθ(λk+1, µk+1)).

Increment k by one and go to Step 1.

Algorithm 4.1: A generating set search augmented Lagrangian algorithm.
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in the GSS solution of the subproblems and the stationarity condition (6). To do so,
let θtol � 1 be given and define

θ(λ, µ) = max

{
1,

(
1 + ‖ λ ‖+

q∑
j=1

1/µj

)
/θtol

}
. (13)

Any function θ(λ, µ) such that (‖ λ ‖ +
∑q

j=1 1/µj) = O(θ(λ, µ)) as (‖ λ ‖ +∑q
j=1 1/µj) →∞ suffices for the purposes of establishing global convergence proper-

ties. We discuss the role of θ further in Section 6.

Finally, we need to take into account the fact that in Algorithm 3.1

ε = min{εmax, βmax∆}. (14)

This leads to the following update for δk:

δk+1 = ωk+1/ (βmax θ(λk+1, µk+1)) . (15)

Observe that the the initialization of δ0 in Algorithm 4.1 and the definition of θ in
(13), together with the update rule (15), ensure that for all k ≥ 0,

δk ≤ min

{
1, θtol/

(
1 + ‖ λk ‖+

q∑
j=1

1/µk,j

)}
ωk

βmax

≤ ωk

βmax

. (16)

As a practical matter, in the implementation of Algorithm 3.1 discussed in [15] the
directions in G are normalized, so βmax = 1, which simplifies both (15) and (16).

4.2 The linear constraints and cones

A technical matter to be addressed is that in (3) the condition for inclusion in the
set D(x, ω) for the augmented Lagrangian is

aT
i x− bi ≤ κ0ω,

whereas in (9) the condition for inclusion in the set D̂(x, ε) for GSS is

aT
i x− bi ≤ ‖ai‖ε. (17)
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Since this affects the definitions of the cones T (x, ω) and T̂ (x, ε), which we wish to
relate in the results that follow in the next section, we reconcile this difference within
Algorithm 4.1 by setting

κ0 = max
i=1,...,p

‖ai‖.

This particular choice of κ0 simplifies the upcoming proof of Proposition 4.1, but is
not essential. Observe that with this choice of κ0, if (17) holds for all i ∈ {1, . . . , p}
and ε ≤ ω, then we have aT

i x − bi ≤ ‖ai‖ε ≤ ‖ai‖ω ≤ maxi=1,...,p ‖ai‖ω for all

i ∈ {1, . . . , p}. Thus D(x, ω) ⊇ D̂(x, ε), so N(x, ω) ⊇ N̂(x, ε) and

T (x, ω) ⊆ T̂ (x, ε), (18)

a fact we use shortly.

4.3 The relationship between ∆k and stationarity

We begin by relating the GSS stopping criterion (12) to the original stopping criterion
(6).

Proposition 4.1 Suppose that AS1–AS3 hold, and let M be a Lipschitz constant
for ∇f(x), ∇c(x), and ∇c(x) c(x) on Ω. Then the following bound holds at outer
iteration k of Algorithm 4.1:

‖ PT (xk,ωk)(−∇xΦk) ‖ ≤
1

κ̂min

(
Mkδkβmax +

α̂

βmin

δk

)
, (19)

where

Mk = M

(
1 + ‖ λk ‖+

q∑
j=1

1/µk,j

)
. (20)

Proof. We first bound the Lipschitz constant for ∇xΦ(x; λk, µk) and then apply
Theorem 3.3. We have

∇xΦ(x; λk, µk) = ∇xf(x) +

q∑
j=1

∑
i∈Qj

[
λk,i∇xci(x) +

1

µk,j

ci(x)∇xci(x)

]
,
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so

‖ ∇xΦ(x; λk, µk)−∇xΦ(y; λk, µk) ‖ ≤ M

(
1 + ‖ λk ‖+

q∑
j=1

1/µk,j

)
‖ x− y ‖.

Since the stopping criterion (12) is invoked at unsuccessful iterations of the GSS
solution of (8), we may apply Theorem 3.3, from which we obtain

‖ PT̂ (xk,εk)(−∇xΦk) ‖ ≤
1

κ̂min

(
Mkδkβmax +

α̂

βmin

δk

)
, (21)

where εk is the value of ε in the solution of (4) at the time the stopping criterion (12)
is triggered.

From (12), (14), and (16) we know that εk ≤ βmaxδk ≤ ωk, so (18) holds. There-
fore,

‖ PT (xk,ωk)(−∇xΦk) ‖ ≤ ‖ PT̂ (xk,εk)(−∇xΦk) ‖.

Combining this with (21) yields the result. �

The next proposition is central to our approach. It says that the asymptotic
behavior of ‖ PTk(xk,ωk)(−∇xΦk) ‖ in Algorithm 4.1 is like its behavior in the original
algorithm.

Proposition 4.2 Suppose that AS1–AS3 hold. Then there exists a constant C > 0,
independent of k, such that the following holds at outer iteration k of Algorithm 4.1:

‖ PT (xk,ωk)(−∇xΦk) ‖ ≤ Cωk. (22)

Proof. From Proposition 4.1 we have

‖ PT (xk,ωk)(−∇xΦk) ‖ ≤
1

κ̂min

(
M

(
1 + ‖ λk ‖+

q∑
j=1

1/µk,j

)
δkβmax +

α̂

βmin

δk

)
,

where M is the Lipschitz constant appearing in Proposition 4.1. The upper bounds
on δk from (16) tell us that δk ≤ ωk/βmax as well as

(
1 + ‖ λk ‖+

q∑
j=1

1/µk,j

)
βmax δk ≤ θtol ωk.
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Therefore

‖ PT (xk,ωk)(−∇xΦk) ‖ ≤
1

κ̂min

(
M θtol ωk +

α̂

βmin

ωk

βmax

)

and the result follows. �
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5 The applicable convergence results from Conn,

Gould, Sartenaer, and Toint

The import of Proposition 4.2 is that the convergence analysis for the original algo-
rithm can be applied and the original proofs of these results still hold with only minor
changes involving the values of some constants that appear (see Appendix A for de-
tails). We now briefly review some of the convergence properties of the augmented
Lagrangian algorithm from [5] that hold for our GSS adaptation. Before doing so, we
recall a little more notation and one additional assumption.

Suppose {xk}k∈K is a subsequence that converges to x∗. We denote by A∗ the
matrix whose rows are the linear constraints that are binding (i.e., hold as equalities)
at x∗, and denote by Z∗ a matrix whose columns form an orthonormal basis for the
nullspace of A∗. If J(x) is the Jacobian of c(x), then the least-squares multiplier
estimate at x∗ corresponding to A∗ is defined to be

λ∗ ≡ −((J(x∗)Z∗)
+)T ZT

∗ ∇f(x∗).

AS4 [5, p. 681] The matrix J(x∗)Z∗ has column rank no smaller than m at any
limit point x∗ of the sequence of {xk}.

The fundamental convergence result for Algorithm 4.1 corresponds to Theorem
4.6 in [5, p. 686].

Theorem 5.1 Assume that AS1 and AS2 hold. Let x∗ be any limit point of the
sequence {xk} generated by Algorithm 4.1 for which AS3 and AS4 hold, and let K be
the set of indices of an infinite subsequence of the xk whose limit is x∗. Finally, let
λ∗ = λ(x∗). Then

(i) there are positive constants κ2 and κ3 such that

‖λ̄(xk, λk, µk)− λ∗‖ ≤ κ2ωk + κ3‖xk − x∗‖,

‖λ(xk)− λ∗‖ ≤ κ3‖xk − x∗‖,

and

‖c(xk)[Qj ]‖ ≤ κ2ωkµk,j + µk,j‖(λk − λ∗)[Qj ]‖+ κ3µk,j‖xk − x∗‖

for all j = 1, . . . , q and all k ∈ K sufficiently large.
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(ii) x∗ is a Karush–Kuhn–Tucker point (first-order stationary point) for the prob-
lem (1), λ∗ is the corresponding vector of Lagrange multipliers, and the sequence
{λ̄(xk, λk, µk)} converges to λ∗ for k ∈ K.

Stronger results follow under additional assumptions on the regularity of f and
c and on the stability of the reduced KKT system under small perturbations of the
problem. Lemma 5.3 of [5, p. 689] then relates the convergence of the iterates to
the error in the multipliers, a relationship characteristic of augmented Lagrangian
methods [2]. Finally, if {xk} has a single limit point x∗, then Theorem 5.6 of [5,
p. 695] says that we may reasonably expect the penalty parameters µk,j to remain
bounded away from zero and Theorem 5.7 of [5, p. 696] gives a rate of convergence
result for the outer iteration.
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6 Updating the subproblem stopping tolerance

The quantity θ, defined in (13), figures in the update (15) of the stopping criterion δk

for the augmented Lagrangian subproblems. It provides a mechanism to dealing with
the nonlinearity of the augmented Lagrangian that can occur for very small values of
the weights µk,j or very large values of the multiplier estimates λk.

As defined in (20), the Lipschitz constant Mk for ∇xΦ(x; λk, µk) depends in an
essential way on λk and µk. This, in turn, affects the relationship between the sta-
tionarity condition (6) and δ, as can be seen in the bound (22) in Proposition 4.1.
The Lipschitz constant Mk will increase as the penalty parameters µk,j decrease or
the multipliers λk increase in magnitude. To counter this effect we must tighten the
stopping tolerance accordingly.

A device similar to θ was used in [16]. However, independent testing revealed that,
for a few test problems, the update rule from [16] causes trouble because the stopping
tolerance δk quickly becomes very small [13]. This leads to the subproblems being
over-solved, with an attendant increase in the overall computational cost. Further
experiments indicated there was rarely a disadvantage to omitting the rescaling by θ
in the update of δk, while there were some dramatic improvements in efficiency [13].

For this reason we define θ in (13) so that it becomes active only if 1 + ‖ λ ‖ +∑q
j=1 1/µk,j exceeds the prescribed threshold θtol. In this way, if θtol is sufficiently

large, and the penalty parameters µk,j remain uniformly bounded away from zero (as
is the case in Theorem 5.6 from [5], for instance), and the multipliers are converging
to their correct values, then we have δk = ωk/βmax for all k, and avoid a rapid decrease
in δk. This threshold trigger θtol was not present in the update rule for δk in [16].

The choice of θ in (13) is still sufficient to prove convergence of Algorithm 4.1 even
if some of the penalty parameters tend to zero. As a practical matter, however, we do
not expect a GSS algorithm to be efficient in this case. The augmented Lagrangian in
(8) will become increasingly nonlinear and ill-conditioned as the penalty parameters
become very small and GSS algorithms tend to converge slowly when confronted with
badly scaled problems.

The difficulty here, the unbounded nonlinearity of the augmented Lagrangian if
some of the penalty parameters tend to zero, also arises in the original Algorithm 2.1
if one solves the subproblem (4) using finite differences to estimate the Jacobian of
the constraints. In this context, the nonlinearity surfaces in the truncation error of
the finite difference estimates. If some of the penalty parameters tend to zero, then
the finite difference perturbation used will need to decrease more quickly than the µk,j

in order to control the truncation error and have assurance that if the finite difference
approximation of ∇xΦk satisfies (6), then the exact gradient ∇xΦk does as well.
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7 Application to inequality constrained

minimization

In the framework considered here, applying a standard approach to dealing with the
nonlinearly inequality constrained problem

minimize f(x)
subject to c(x) ≥ 0

Ax ≥ b

leads to an augmented Lagrangian of the form

Φ(x, z(x); λ, µ) = f(x) +

q∑
j=1

µj

2

∑
i∈Qj

([
max

{
0, λi +

1

µj

ci(x)

}]2

− λ2
i

)

and the solution of successive subproblems of the form

minimize Φ(x, z(x); λ, µ)
subject to Ax ≥ b.

The multiplier update formula (7) is also modified:

λ̄(x, λ[Qj ], µj)[Qj ] = max
{
0, λ[Qj ] + c(x)[Qj ]/µj

}
, j = 1, . . . , q.

See [2, Chapter 3] for details.
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8 Conclusion

We have crafted a derivative-free GSS augmented Lagrangian algorithm for optimiza-
tion with a combination of general and linear constraints based on the augmented
Lagrangian framework of Conn, Gould, Sartenaer, and Toint [5]. To do so we use
a linearly constrained GSS method [12] to solve the subproblems (4) and replace
the derivative-based stopping criterion (6) with the derivative-free stopping criterion
(12). In Proposition 4.2 we have shown that this substitution still allows us to satisfy
the optimality condition (6). As a consequence the derivative-free adaptation inherits
the first-order convergence properties of the original augmented Lagrangian algorithm
(Theorem 5.1), even in the absence of explicit knowledge of derivatives for f and c.
This extends the results in [16], which dealt directly with bound constraints only, just
as [5] extends the results in [6] (upon which [16] is based).

In addition, we have improved upon the update rule introduced in [16] for the
sequence of stopping tolerances for the subproblems. The new rule relaxes the strin-
gency of the test for an approximate solution to subproblem (4) while still satisfying
(6), even if some of the penalty parameters tend to zero.
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[18] J.-J. Moreau, Décomposition orthgonale d’un espace hilbertien selon deux
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A Global convergence analysis

Our goal in this section is to demonstrate that the key convergence results from [5]
still hold when we substitute our stopping criterion (12) for the original stopping
condition (6). This reduces to an exercise in chasing through the constant C that
appears on the right-hand side of (22) to ensure that it does not change the conclusions
of the results we need from [5]. Most of the presentation that follows is reproduced
verbatim from [5]. The changes required to accommodate the stopping criterion we
have substituted are highlighted.

Let g(x) denote the gradient ∇xf(x) of f(x), with gk = g(xk). Let g`(x, λ)
and H`(x, λ), respectively, denote the gradient, ∇x`(x, λ), and the Hessian matrix,
∇xx`(x, λ), of the Lagrangian function

`(x, λ) = f(x) +
m∑

i=1

λici(x).

We note that `(x, λ) is the Lagrangian solely with respect to the ci constraints.

Recalling the definitions of A∗, Z∗, and J(x) from Section 5, we define the least-
squares Lagrange multiplier estimates (corresponding to A∗) as

λ(x)
def
= −((J(x)Z∗)

+)T ZT
∗ g(x) (23)

at all points where the right generalized inverse

(J(x)Z∗)
+ def

= ZT
∗ J(x)T (J(x)Z∗Z

T
∗ J(x)T )−1

of J(x)Z∗ is well defined. We note that whenever J(x)Z∗ has full rank, λ(x) is
differentiable and its derivative is given in the following lemma.

Lemma A.1 [5, Lemma 2.1, p. 677] Suppose that AS2 holds. If J(x)Z∗Z
T
∗ J(x)T is

nonsingular, λ(x) is differentiable and its derivative is given by

∇xλ(x) = −((J(x)Z∗)
+)T ZT

∗ H`(x, λ(x))− (J(x)Z∗Z
T
∗ J(x)T )−1R(x), (24)

where the ith row of R(x) is (ZT
∗ g(x) + ZT

∗ J(x)T λ(x))T ZT
∗ ∇xxci(x).

We rewrite (7) in the compact form

λ̄k = λ̄(xk, λk, µk). (25)
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We shall use the identity

∇xΦ(x; λ, µ) = ∇xf(x) +

q∑
j=1

∑
i∈Qj

[
λi∇xci(x) +

1

µj

ci(x)∇xci(x)

]
= g`(x, λ̄(x, λ, µ)).

which we then write using the compact notation

∇xΦk = ∇xΦ(xk; λk, µk) = g`(xk, λ̄k). (26)

Once xk satisfying (6) has been determined by the inner iteration, we denote

Dk = D(xk, ωk), Nk = N(xk, ωk), Tk = T (xk, ωk). (27)

Denote by ADk
the submatrix of A consisting of the row(s) whose index is in Dk. For

future reference, we define Zk to be a matrix whose columns form an orthonormal
basis of Vk, the null space of ADk

, and Yk to be a matrix whose columns form an
orthonormal basis of Wk = V⊥k . We note that Vk ⊆ Tk and, hence, that

‖ ZT
k ∇xΦk ‖ = ‖ ZkZ

T
k ∇xΦk ‖ ≤ ‖ PTk

(−∇xΦk) ‖, (28)

since ZkZ
T
k is the orthogonal projection onto Vk.

Recall that the stopping criterion (12) for Algorithm 4.1 implies that under as-
sumptions AS1–AS3 the result (22) of Proposition 4.2 holds. Thus

∆k ≤ δk ⇒ ‖ PTk
(−∇xΦk) ‖ ≤ Cωk. (29)

We notice that AS3 implies that there exists at least a convergent subsequence
of iterates but does not, of course, guarantee that this subsequence converges to a
stationary point, i.e., that “the algorithm works.” We also note that it is always
satisfied in practice because the linear constraints in (1) include lower and upper
bounds on the variables, either actual or implied by the finite precision of computer
arithmetic.

We now proceed to show that Algorithm 4.1 is globally convergent under the
additional assumption AS4, which guarantees that the dimension of the null space of
A∗ is large enough to provide the number of degrees of freedom that are necessary to
satisfy the nonlinear constraints, and we require that the gradients of these constraints
(projected onto this null space) are linearly independent at every limit point of the
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sequence of iterates. This assumption is the direct generalization of AS3 used by
Conn, Gould, and Toint [6].

We shall analyze the convergence of Algorithm 4.1 in the case where the conver-
gence tolerances ω∗, and η∗ are both zero. We first need the following lemma, proving
that (29) prevents both the reduced gradient of the augmented Lagrangian and its
orthogonal complement from being arbitrarily large when ωk is small.

Lemma A.2 [5, Lemma 4.1, p. 681] Let {xk} ⊂ B, k ∈ K, be a sequence that
converges to the point x∗ and suppose that

‖ PTk
(−∇xΦk) ‖ ≤ Cωk,

where the ωk are positive scalar parameters that converge to zero as k ∈ K increases.
Then

‖ ZT
∗ ∇xΦk ‖ ≤ ‖ ZT

k ∇xΦk ‖ ≤ Cωk and ‖ Y T
k (xk − x∗) ‖ ≤ κ1ωk (30)

for some κ1 > 0 and for all k ∈ K sufficiently large.

Proof. Observe that, for k ∈ K sufficiently large, ωk is sufficiently small and xk

sufficiently close to x∗ to ensure that all the constraints in Dk are active at x∗. This
implies that the subspace orthogonal to the normals of the dominant constraints at
xk, Vk, contains the subspace orthogonal to the normals of the constraints active at
x∗. Hence, we deduce that

‖ ZT
∗ ∇xΦk ‖ ≤ ‖ ZT

k ∇xΦk ‖ ≤ ‖ PTk
(−∇xΦk) ‖ ≤ Cωk,

where we have used (28) to obtain the second inequality and (29) to deduce the third.
This proves the first part of (30).

We now turn to the second. If Dk is empty, then Yk is the zero matrix and the
second part of (30) immediately follows. Assume therefore that Dk 6= ∅. We first
select a submatrix ÂDk

of ADk
that is of maximal full row-rank and note that the

orthogonal projection onto the subspace spanned by the {ai}i∈Dk
is nothing but

YkY
T
k = ÂT

Dk
[ÂDk

ÂT
Dk

]−1ÂDk
.

Hence we obtain from the orthogonality of Yk, the bound |Dk | ≤ p, (3) and (27), and
the fact that all the constraints in Dk are active at x∗ for k sufficiently large, that

‖ Y T
k (xk − x∗) ‖ ≤ ‖ ÂT

Dk
[ÂDk

ÂT
Dk

]−1 ‖ · ‖ ÂDk
(xk − x∗) ‖

≤ ‖ ÂT
Dk

[ÂDk
ÂT

Dk
]−1 ‖ pκ0ωk.

(31)
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But there are [sic] only a finite number of nonempty sets Dk for all possible choices
of xk and ωk, and we may thus deduce the second part of (30) from (31) by defining

κ1 = pκ0 min ‖ ÂT
Dk

[ÂDk
ÂT

Dk
]−1 ‖,

where the minimum is taken on all possible choices of Dk and ÂDk
. �

We now examine the behavior of the sequence {∇xΦk}. We first recall a result
extracted from the classical perturbation theory of convex optimization problems.
This result is well known and can be found, for instance, in [8, pp. 14–17].

Lemma A.3 [5, Lemma 4.2, p. 682] Assume that U is a continuous point-to-set
mapping from S ⊂ R` into the power set of Rn such that the set U(θ) is convex and
nonempty for each θ ∈ S. Assume that the real-valued function F (y, θ) is defined and
continuous on the space Rn×S and convex in y for each fixed θ. Then the real-valued
function F∗ defined by

F∗(θ)
def
= inf

y∈U(θ)
F (y, θ)

is continuous on S.

We now show that, if it converges, the sequence {∇xΦk} tends to a vector that is
a linear combination of the rows of A∗ with nonnegative coefficients.

Lemma A.4 [5, Lemma 4.3, p. 682] Let {xk} ⊂ B, k ∈ K, be a sequence that
converges to the point x∗ and suppose that the gradients ∇xΦk, k ∈ K, converge to
some limit ∇xΦ∗. Assume furthermore that (29) holds for k ∈ K and that ωk tends
to zero as k ∈ K increases. Then

∇xΦ∗ = AT
∗ π∗

for some vector π∗ ≥ 0, where A∗ is the matrix whose rows are those of A correspond-
ing to active constraints at x∗.

Proof. We first define

σk
def
= max

A(xk+d)−b≥0

‖ d ‖≤1

(−∇xΦ
T
k d) (32)
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with the aim of showing that this quantity tends to zero when k ∈ K increases. We
obtain from (32), the Moreau decomposition [18] of ∇xΦk, and the Cauchy–Schwarz
inequality that

σk ≤ max
A(xk+d)−b≥0

‖ d ‖≤1

PTk
(−∇xΦk)

T d + max
A(xk+d)−b≥0

‖ d ‖≤1

PNk
(−∇xΦk)

T d

≤ ‖ PTk
(−∇xΦk) ‖+ max

d∈Bk

PNk
(−∇xΦk)

T d,
(33)

where Bk
def
=
{

d ∈ Rn | aT
i (xk + d)− bi ≥ 0 (i ∈ Dk) and ‖ d ‖ ≤ 1

}
. Since, for xk

sufficiently close to x∗ and ωk sufficiently small, all the constraints in Dk must be
active at x∗, we have that Nk is included in the normal cone N(x∗, 0) and therefore the
vector PNk

(−∇xΦk) belongs to this normal cone. Moreover, since the maximization
problem of the last right–hand side of (33) is a concave program, since x∗ is feasible
for (1) and since ‖ x∗ − xk ‖ ≤ 1 for k ∈ K large enough, we thus deduce that
d = x∗ − xk is a global solution of this problem. Observing that

PNk
(−∇xΦk)

T d = [YkY
T
k PNk

(−∇xΦk)]
T d = PNk

(−∇xΦk)
T YkY

T
k d,

we obtain

max
d∈Bk

PNk
(−∇xΦk)

T d = max
d∈Bk

PNk
(−∇xΦk)

T YkY
T
k d ≤ ‖PNk

(−∇xΦk)‖·‖Y T
k (xk−x∗)‖, (34)

where we have used the Cauchy–Schwarz inequality to deduce the last inequality. We
may now apply Lemma A.2 and deduce from the second part of (30), (34), and the
contractive character of the projection onto a convex set containing the origin that

max
d∈Bk

PNk
(−∇xΦk)

T d ≤ κ1ωk‖ ∇xΦk ‖,

and thus, from (33) and our assumptions, that

σk ≤ Cωk + κ1ωk‖ ∇xΦk ‖.

Our assumption on the ωk sequence then implies that σk converges to zero as k
increases in K.

Consider now the minimization problem

min
d∈Rn

∇xΦ
T
∗ d

subject to A(x∗ + d)− b ≥ 0
‖ d ‖ ≤ 1.

(35)
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Since the sequences {∇xΦk} and {xk} converge to ∇xΦ∗ and x∗, respectively, we
deduce from Lemma A.3 applied to the optimization problem (32) (with the choices
θT = (∇xΦ

T , xT ), U(θ) = { d | A(x + d)− b ≥ 0, ‖ d ‖ ≤ 1 }, y = d, F (y, θ) =
∇xΦ

T d), and the convergence of the sequence σk to zero that the optimal value for
problem (35) is zero. The vector d = 0 is thus a solution for problem (35) and satisfies

∇xΦ∗ = AT
∗ π∗ − 2ζd = AT

∗ π∗

for some vector π∗ ≥ 0, which ends the proof. �

The important part of our convergence analysis is the next lemma.

Lemma A.5 [5, Lemma 4.4, p. 683] Suppose that AS1 and AS2 hold. Let {xk} ⊂ B,
k ∈ K, be a sequence satisfying AS3 that converges to the point x∗ for which AS4 holds
and let λ∗ = λ(x∗), where λ satisfies (23). Assume that {λk}, k ∈ K, is any sequence
of vectors and that {µk}, k ∈ K, form a nonincreasing sequence of q-dimensional
vectors. Suppose further that (29) holds where the ωk are positive scalar parameters
that converge to zero as k ∈ K increases. Then

(i) there are positive constants κ2 and κ3 such that

‖ λ̄(xk, λk, µk)− λ∗ ‖ ≤ κ2ωk + κ3‖ xk − x∗ ‖, (36)

‖ λ(xk)− λ∗ ‖ ≤ κ3‖ xk − x∗ ‖, (37)

and,

‖ c(xk)[Qj ] ‖ ≤ κ2ωkµk,j + µk,j‖ (λk − λ∗)[Qj ] ‖+ κ3µk,j‖ xk − x∗ ‖ (38)

for all j = 1, . . . , q and all k ∈ K sufficiently large.

Suppose, in addition, that c(x∗) = 0. Then

(ii) x∗ is a Karush-Kuhn-Tucker point (first-order stationary point) for the prob-
lem (1), λ∗ is the corresponding vector of Lagrange multipliers, and the sequences
{λ̄(xk, λk, µk)} and {λ(xk)} converge to λ∗ for k ∈ K;

(iii) the gradients ∇xΦk converge to g`(x∗, λ∗) for k ∈ K.

Proof. As a consequence of AS2–AS4, we have that for k ∈ K sufficiently large,
(JkZ∗)

+ exists, is bounded, and converges to (J(x∗)Z∗)
+. Thus, we may write

‖ ((JkZ∗)
+)T ‖ ≤ κ′2 (39)
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for some constant κ′2 > 0. Equations (26) and (25), the inner iteration termination
criterion (29), and Lemma A.2 give that

‖ ZT
∗ (gk + JT

k λ̄k) ‖ ≤ Cωk (40)

for all k ∈ K large enough. By assumptions AS2, AS3, AS4, and (23), λ(x) is bounded
for all x in a neighborhood of x∗. Thus we may deduce from (23), (39), and (40) that

‖ λ̄k − λ(xk) ‖ = ‖ ((JkZ∗)
+)T ZT

∗ gk + λ̄k ‖
= ‖ ((JkZ∗)

+)T (ZT
∗ gk + (JkZ∗)

T λ̄k) ‖
≤ ‖ ((JkZ∗)

+)T ‖ C ωk

≤ C κ′2 ωk.

(41)

Moreover, from the integral mean value theorem and Lemma A.1 we have that

λ(xk)− λ(x∗) =

∫ 1

0

∇xλ(x(s))ds · (xk − x∗), (42)

where ∇xλ(x) is given by equation (24) and x(s) = xk + s(x∗ − xk) [sic]. Now the
terms within the integral sign are bounded for all x sufficiently close to x∗ and hence
(42) gives

‖ λ(xk)− λ∗) ‖ ≤ κ3 ‖ xk − x∗ ‖ (43)

for all k ∈ K sufficiently large and for some constant κ3 > 0, which implies inequality
(37). We then have that λ(xk) converges to λ∗. Combining (41) and (43) we obtain

‖ λ̄k − λ∗ ‖ ≤ ‖ λ̄k − λ(xk) ‖+ ‖ λ(xk)− λ∗ ‖ ≤ Cκ′2ωk + κ3 ‖ xk − x∗ ‖, (44)

which gives the required inequality (36) with κ2 = Cκ2
′. Then, since by assumption

ωk tends to zero as k increases, (44) implies that λ̄k converges to λ∗ and therefore,
from the identity (26), ∇xΦk converges to g`(x∗, λ∗). Furthermore, multiplying (7)
by µk,j we obtain

c(xk)[Qj ] = µk,j((λ̄k − λ∗)[Qj ] + (λ∗ − λk)[Qj ]). (45)

Taking norms of (45) and using (44), we derive (38).

Now suppose that

c(x∗) = 0. (46)

43



Lemma A.4 and the convergence of ∇xΦk to g`(x∗, λ∗) give that

g(x∗) + J(x∗)
T λ∗ = AT

∗ π∗

for some vector π∗ ≥ 0. This last equation and (46) show that x∗ is a Karush–Kuhn–
Tucker point and λ∗ is the corresponding set of Lagrange multipliers. Moreover, (36)
and (37) ensure the convergence of the sequences {λ̄(xk, λk, µk)} and {λ(xk)} to λ∗
for k ∈ K. Hence the lemma is proved. �

No further changes to the original analysis in [5] are needed beyond this point.
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